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ABSTRACT
We review the statistical properties of relativistic Doppler boosting relevant for studies of
relativistic jets from compact objects based on radio–X-ray(–mass) correlations, such as that
found in black-hole X-ray binaries in the low/hard state, orthe “fundamental plane” of Mer-
loni, Heinz, & DiMatteo. We show that the presence of only moderate scatter in such relations
does not necessarily imply low Lorentz factors of the jets producing the radio emission in the
samples under consideration. Applying Doppler beaming statistics to a large sample of XRBs
and AGN, we derive a limit on the width of the Lorentz factor distribution of black holes with
relativistic jets: If the X-rays are unbeamed (e.g., if theyoriginate in the accretion disk or in
the slower, innermost part of the jet), the width of theβΓ distribution should be about one
order of magnitude or less. If the scatter about the “fundamental plane” is entirely dominated
by relativistic beaming, a lower limit on the mean Lorentz factor〈βΓ〉 > 5 can be derived. On
the other hand, if the X-rays are boosted by the same factor asthe radio emission, we show
that the observed scatter cannot be reasonably explained byDoppler boosting alone.
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1 INTRODUCTION

Astrophysical jets from black holes in active galactic Nuclei
(AGNs) and X-ray binaries (XRBs) are known to propagate
with velocities close to the speed of light. Evidence for rela-
tivistic bulk motion stems from variability and compactness lim-
its in compact cores (Jones et al. 1974), from superluminal mo-
tions of knots(Whitney et al. 1971; Cohen et al. 1971), and from
doppler boostes jet-to-counter jet flux ratios (e.g. Perleyet al.
1982). While proper motion measurements typically only constrain
pattern speeds, the body of evidence points towards a range of
mildly to ultra-relativistic jet speeds. As a result, the observed flux
densities from these jets can be affected by strong Doppler boost-
ing, which must be corrected for if one wants to infer the intrinsic
luminosity of the jet, emitted in the rest frame of the plasma, which
is important when calculating the physical parameters of the jet.

Recently, a correlation between the radio emission from
steady jets and the hard (2-10 keV) X-ray emission has been found
in black hole XRBs (Corbel et al. 2003; Gallo et al. 2003). This
relation implies that in a given XRB in the low/hard state (see
McClintock & Remillard 2004, for a review of the state classifi-
cation in XRBs), the radio flux is proportional to the X-ray flux to
the 0.7th power. This trend has been observed for different sources.
The normalisation of the relation differs only by factors ofa few
for different XRBs. Since the radio emission stems from the jet, it
will be affected by Doppler boosting and its brightness willdiffer
strongly for different viewing angles. In the standard scenario, the

X-rays come from the disk (or alternatively the inner, slow moving
part of the jet) and are thus not significantly beamed. The lack of
strong scatter in the radio-X-ray relation has been interpreted as an
indication that Doppler boosting is weak in the steady jets of XRBs
in the low/hard state and that they must therefore move with only
mildly relativistic speeds (Gallo et al. 2003).

Furthermore, Merloni et al. (2003) and (Falcke et al. 2004)
have found a strong correlation between radio luminosity, X-ray lu-
minosity, and black hole mass for samples of black holes spanning
a wide range in black hole masses and accretion rates (calledthe
“fundamental plane of black hole activity”, FP for short). Again,
this relation shows a certain amount of intrinsic scatter, part of
which might be contributed by Doppler boosting. Thus, studying
this scatter can provide constraints on the presence or absence of
Doppler boosting in the jets that produce the radio emission.

The nature of Doppler boosting has been studied exhaustively
in the literature, specifically in regard to its statisticaleffects on
samples of objects emitting beamed radiation (Orr & Browne 1982;
Urry & Shafer 1984; Urry & Padovani 1991, 1995; Morganti et al.
1995; Lister & Marscher 1997; Lister 2003). Typically, one deals
with a sample of radio sources that have been selected in the radio
band and consider the effects of Doppler boosting on their lumi-
nosity function and on possible selection effects, not knowing what
the unboosted flux of any particular source in the sample is.

What makes the situation considered in this paper different
is that we actuallyhave an unbiased estimator of the unbeamed
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radiation: in the case of XRBs it is the X-ray luminosity, in the more
general case of black holes of all masses it is the FP relationthat
links radio luminosity, X-ray luminosity, and black hole mass. It is
therefore worth considering the statistical properties ofrelativistic
Doppler boosting under those conditions.

In §2 we will review the basic properties of Doppler boosting
and define the statistical integrals necessary for the remainder of
the paper. In§3 we will apply these results to individual pairs of
XRBs and argue that the observed moderate amount of scatter in
the XRB radio-X-ray relation alone cannot be used to argue for low
jet velocities. In§4 we apply the same method to the FP sample to
derive constraints on the Lorentz factor distribution of the source in
the sample. Section 5 presents our conclusions.

2 THE BEAMING PROBABILITY DISTRIBUTION

In the following we will consider radio emission from two-sided
jets. We will assume that the approaching jet is identical tothe re-
ceding jet. We will further assume that the spectrum emittedby the
jet is a powerlaw with indexαr such that the jet flux isFν ∝ ν−αr .
We will use a fiducial value ofαr = 0, appropriate for the cores of
jets observed in AGNs and XRBs, which show a roughly flat spec-
trum emitted from acontinuous jet. For a review on jet properties
and relativistic beaming, see, e.g., Begelman et al. (1984).

We are interested in situations where we have an indepen-
dent estimator of the relative radio flux of different sources in the
sample from observables like the X-ray flux, the distance, and the
black hole mass, such as were proposed by Corbel et al. (2003);
Gallo et al. (2003); Merloni et al. (2003); Falcke et al. (2004). Fur-
thermore, we are interested in situations where the set of indepen-
dent measurements is drawn from a sample of sources that are not
selected in the spectral band where beaming is important andcan
thus be assumed to be oriented randomly. That is, the orientation
of the approaching jet is random on a hemisphere of2π steradian.
This implies thatcos θ is randomly distributed between 0 and 1,
whereθ is the angle between the line of sight and the approaching
jet. It doesnot imply thatθ is randomly distributed between 0 and
π/2.

For a given jet Lorentz factorΓ and four-velocityβΓ =√
Γ2 − 1, the relativistic Doppler boosting formula for the ob-

served fluxFν relative to the flux emitted in the rest frame of the
plasmaFν,jet is:

Fν =
Fν,jet

Γk+αr

[

1

(1 + β cos θ)k+αr
+

1

(1 − β cos θ)k+αr

]

(1)

wherek varies from 2 for continuous jets to 3 for discrete ejections
(e.g. Urry & Padovani 1995). Since we are considering steady,
quasi-continuous jets, we will takek = 2 as our fiducial value.

Since the sources are randomly oriented, the fractionP (> θ)
of sources with line of sight angle larger thanθ is simply

P (> θ) =

∫ θ

0

dθ sin θ = cos θ (2)

(note that0◦

6 θ 6 90◦) and eq. (1) becomes

Fν(P, Γ) =
Fjet(ν)

Γk+αr

[

1

(1 + βP )k+αr
+

1

(1 − βP )k+αr

]

(3)

F (P, Γ) is monotonic inP for 0 6 P 6 1. For a givenΓ, P is the
probability to observe a source at boosted flux lower thanFν(P ).
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Figure 1. Probability for Doppler boosted flux to lie above a given value
(relative to the maximally de-boosted fluxFmin at 90

◦

viewing angle).
Curves are for increasing 4-velocityβΓ from βΓ = 0.1 (leftmost) toβΓ =

100 (rightmost), in logarithmic intervals increasing by factors of
√

10.

Assuming the fiducial values ofαr = 0 andk = 2, we can in-
vert eq. (3) to find the cumulative probability of observing asource
at a flux lower thanFν (plotted in Fig. 1):

P (< Fν) =
1

β

√

1 +
1

FΓ2
−

√

(

1 +
1

FΓ2

)2

+
2

FΓ2
− 1 (4)

and, conversely,P (> Fν) = 1 − P (< Fν).
It is clear from eq.(4) that, in a randomly oriented sample of

jets with identicalΓ, most of the sources fall into a relatively narrow
flux range: Using0 6 β 6 1, we can see that 50% of the sources
fall within the range

2

Γk+αr
6 Fν 6

1

Γk+αr

(

2k+αr +
(

2

3

)k+αr

)

(5)

For the fiducial parameters, these two limits fall within a factor of
6 2.2. Thus,independent of the actual Lorentz factor, the fluxes of
50% of the sources in a randomly oriented sample of flat spectrum
jets with identicalΓ fall within a factor of6 2.2. The remaining
sources are distributed in a tail to larger observed fluxes, cutting off
at the maximum flux,Fν 6 Γ2

(

2 + 2β2
)

(see Fig. 1). The curves
for Γ = 10 andΓ = 100 differ only belowP (> Fν) < 3%, i.e.,
for 3 out of 100 sources.

Well below this cutoff, the probability distribution is very sim-
ilar for differentΓ, but shifted to lower fluxes (i.e., deboosted) by
a factor ofζ0 ≡ 1/Γk+αr . Thus, measuring the width of the flux
distribution (FWHM) of randomly oriented sourceswith identical
Γ is not sufficient to determineΓ if the width is larger than about
a factor of 2.2. A proper determination would require sampling the
cutoff. For a measured width ofδ ≡ Fmax/Fmin ≫ 2.2, to be able
to say that the upper limit corresponds to the cutoff would require
a total number of sources well in excess of

N(δ) =

[

1 −
√

2δ + 1 −
√

8δ + 1

2δ

]

−1

(6)

where we used eq. (3) andα = 0 andk = 2.
However, it is rather unlikely that the bulk Lorentz factorsof

all the sources are identical. Instead,βΓ will follow some distribu-
tion f(βΓ) around a meanβΓmean = 〈βΓ〉. Because of the strong
dependence of the shiftζ0 of the flux distribution onΓ and because
the flux distribution for a givenΓ is strongly concentrated around
the minimum value, the spreadδ in the flux distributionof a ran-
domly oriented sample is typically dominated by the spread inΓ,
not by viewing angle effects.

Thus, for flux distributions significantly wider thanδ ∼ 2.2,
we cannot determine the maximum or meanβΓ simply by mea-
suring the width of the flux distribution, assuming an inherently
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uniform flux, or by imposing a universal radio-X-ray relation
(Gallo et al. 2003; Merloni et al. 2003; Falcke et al. 2004) and mea-
suring the spread against this relation. Only if the distribution con-
tains a total number of sources well in excess of the value of eq. (6)
and if the upper cutoff of the flux distribution is well sampled can
one derive an upper limit onβΓ. Otherwise, the only conclusion
that can be reached from a relatively narrow distribution influxes
around a radio-X-ray relation is thatthe spread in Γ aroundβΓmean

is small.

3 CONSTRAINTS FOR A SINGLE PAIR OF RADIO JETS

For situations where a tight relation between the beamed radio jet
emission with some unbeamed observables (e.g., the X-ray flux)
is observed over a large range in the secondary observables but
for a small number of sources, one can derive constraints on the
Lorentz factors of individual pairs of sources from the difference
in normalisation of the observed relation, assuming that itreflects
only differences in orientation and Lorentz factor.

One such example is the XRB radio-X-ray relation
(Corbel et al. 2003; Gallo et al. 2003), where the number of sources
contributing is rather small — between 2 and 4 on the low lumi-
nosity end, where the relation holds most firmly. The two mostsig-
nificant sources in the sample are V404 Cyg and GX339-4. Fol-
lowing Gallo et al. (2003), the radio flux in V404 is a factor of
about 2.5 to 5 larger than that of GX339-4 for the same X-ray
flux. Allowing for some uncertainty in the mass of the black hole
in GX339-4 (Hynes et al. 2004) and of the distances to GX339-4
and V404 (Hynes et al. 2004; Jonker & Nelemans 2004), the rough
confidence limits on this ratio fall between 1.5 and 5. We can then
ask what constraints on beaming can be derived from this observa-
tion.

We assume that, at the same X-ray luminosity, both sources
have the same comoving (i.e., unbeamed) radio luminosity, i.e.,
they fall on the same X-ray-radio relation when corrected for beam-
ing. In other words, we assume that the X-rays are not affected by
beaming (see§4 for more discussion of this assumption). If the jets
have Lorentz factors ofΓ404 andΓ339, the probability that the ob-
served radio flux from V404 is larger than that of GX339 by a factor
δ is

P (F404 > δF339) = 1 −
∫ 1

0

dpP (δFν(p,Γ339), Γ404) (7)

whereFν(p,Γ) follows eq. (3) andP (F, Γ) is taken from eq. (4).
Fig. 2 shows the one-, two-, and three-sigma contours onβΓ

of both jets for the range in normalisation offsets allowed by the
observations (Gallo et al. 2003)1.5 ∼< F404/F339 ∼< 5. The fact
that the ratio ofF404/F339 is close to unity implies that the Lorentz
factors of both sources fall within roughly a factor of 2 and that the
jet in GX339-4 likely has a higher Lorentz factor than that ofV404.
The possible presence of larger uncertainties in black holemass and
distance to both objects that are unaccounted for in our estimate ofδ
imply that the confidence contours in Fig. 2 will be widened and the
constraints onβΓ404/βΓ339 will be less stringent, thus allowing
theΓ of both objects to be more different than otherwise implied.

While it is not possible to extend this graphical analysis to
more than 2 sources, the formalism can easily be adapted to N
sources, in which case the confidence contours turn into N-1 dimen-
sional hyper-surfaces in an N dimensionallog βΓn space. Asymp-
totically (at largeβΓn), the surfaces will describe hyper-cylinders
around an axis parallel to the diagonal vector(1, 1, ..., 1), shifted

0.1 1.0 10.0 100.0
βΓGX339

0.1

1.0

10.0

100.0

βΓ
V

40
4

0.1 1.0 10.0 100.0
0.1

1.0

10.0

100.0

0.1 1.0 10.0 100.0
0.1

1.0

10.0

100.0

1σ

1σ

2σ

0.1 1.0 10.0 100.0
0.1

1.0

10.0

100.0

0.1 1.0 10.0 100.0
0.1

1.0

10.0

100.0

0.1 1.0 10.0 100.0
0.1

1.0

10.0

100.0

0.1 1.0 10.0 100.0
0.1

1.0

10.0

100.0
1σ

1σ

2σ

2σ

3σ

δ=1.5 δ=5

 1.0 10.0 100.0
βΓGX339

 

 

 

 

 

 1.0 10.0 100.0
 

 

 

 

 1.0 10.0 100.0
 

 

 

 

1σ

1σ
2σ

 1.0 10.0 100.0
 

 

 

 

 1.0 10.0 100.0
 

 

 

 

 1.0 10.0 100.0
 

 

 

 

 1.0 10.0 100.0
 

 

 

 

1σ

1σ

2σ

2σ

2σ

3σ

δ=1.5 δ=5

Figure 2. Chisquare maps of the jet Lorentz factors of GX339-4 (bottom
axis) and V404 Cyg (left axis), given the observed difference in radio lu-
minosity 1.5 ∼< δ ∼< 5 (left and right panel respectively). Shown are the
contours outside of which the probability of observing a fluxratio larger or
smaller thenδ are 68%, 95%, 99.5% (i.e., 1,2, and 3 sigma).

along each axis by the square root of the flux ratio of the reference
source relative to sourcen. For largeN , this distribution of shifts
is then a representation of the distribution ofΓn.

The formal conclusion we reach from this analysis is that the
relative similarity in the normalisation of the radio-X-ray relations
for GX339-4 and V404 Cyg does not imply that the Lorentz fac-
tors of both jets are small, but rather that they are similar.From the
constraints on the scatter about the radio-X-ray relation,we cannot
put any upper limit onΓ of either source. However, because for
largeΓ, the observed radiation is severely de-boosted, other phys-
ical limitations can provide such limits. E.g., at very large Γ, the
implied kinetic power would vastly exceed any reasonable limits
(Fender et al. 2004). Also, radio timing constraints from Cyg X-1
indicate that its jet is only moderately relativistic (Gleissner et al.
2004).

4 THE SPREAD IN THE FUNDAMENTAL PLANE

We will now use the scatter observed in the radio–X-ray–mass
“fundamental plane” (FP) correlation found by Merloni et al.
(2003) and Falcke et al. (2004) to constrain the Lorentz factor dis-
tribution of the jets in the sample. These limits will be based on
the assumption that the orientation of the sources is randomand
that the scatter in the distribution is at least partly due torelativistic
beaming. Clearly, other sources of scatter will enter (e.g., uncer-
tainty in black hole mass, spin, variations inαr), so the observed
scatter cannot besolely due to relativistic boosting. This implies
that any constraints derived here will be upper limits. We will show
that the observed scatter can only be used to constrain the width of
the Lorentz factor distribution.

4.1 Unbeamed X-rays

If the X-ray emission of the sources in the sample stems from the
accretion disk, the X-rays will not be affected by relativistic beam-
ing. It should be noted that the disk X-ray emission can stillbe
anisotropic simply due to the nature of the accretion flow (e.g.,
Shakura & Sunyaev 1973; Beloborodov 1999), however, the scat-
ter produced by the differences in viewing angle is a relatively mild
effect and small compared to the scatter due to boosting, andwe
will neglect this effect in the following. We can estimate the radio
Doppler boosting factor from eq. (3) usingk = 2 andαr = 0. We
can then relate this expression to the scatter about the FP,
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Figure 3. Upper panel:thick grey curve: Histogram of the scatter of all
individual sources of the FP sample (excluding upper limitsand averaging
over the different data sets for different XRBs);solid black curve: fit of
log-normal distribution withβΓmean = 10.5, σ = 0.78; dotted black
curve: fit of log-flat βΓ distribution with βΓmean = 10.5, σ = 1.34.
Lower panel: residuals. Insert:Upper panel: histogram ofβΓ-distributions
corresponding to fits in Fig. 3 (black: log-normal,grey: log-flat). Lower
panel: correspondingβΓ distributions.

δ = Fr/(10
7.33F 0.6

x M0.78) (8)

Since we have no information about the distribution ofΓ, we
will take two simple functional forms as templates. First, we will
use a log–normal distribution of the form (see Fig. 3):

f(βΓ) =
N exp

[

− (log βΓ/βΓmean)2 /
(

2σ2
)]

βΓσ
√

2π
(9)

Since the un-beamed normalization of the radio flux is unknown
(the mean in the FP distribution corresponds to an average over all
angles andΓ’s), we have to allow for an arbitrary re-normalisation
of the fluxδ0. We can then produce a histogram of the scatterδ of
all the sources in the FP relation. This is shown in Fig. 3. We have
used Poisson errors for the histogram bins. Also shown is a fitof
a log-normal distribution inβΓ to this histogram (fit parameters:
βΓmean = 7, σ = 0.78, δ0 = 0.74), which can reproduce the
range and shape of the scatter distribution rather well.

Fitting a log-flat distribution of the formf(βΓ) =
N/

(

ln (σ2)βΓ
)

for βΓmean

σ
6 βΓ 6 σβΓmean andf(βΓ) = 0

elsewhere, provides a marginally better fit, which can be under-
stood by the fact that it is a decent approximation to eq. (9) to low-
est order. This shows that we cannot constrain the shape of the βΓ
distribution very well. For the purpose of this letter, we shall limit
ourselves to constraining the width of this distribution. Abetter de-
termination of the shape of the distribution will only be possible
when a larger, more carefully selected sample is available.

In §1 we argued that the width of the scatter distribution about
a radio–X-ray(–mass) relation can only be used to constrainthe
width σ of the distribution, notβΓmean itself. To demonstrate this
point quantitatively, Fig.4 shows the chi-square distribution of the
two interesting parametersβΓmean andσ (marginalising over the
unknown radio flux normalisationζ0 of the underlying, unbeamed
FP relation) of the assumed lognormal distribution inβΓ used to
fit the δ histogram in Fig. 3. The 1, 2, and 3 sigma confidence con-
tours show thatσ is constrained much better thanβΓmean. In fact,
the fit only provides alower limit onβΓmean, similar to the result in
Fig. 2. However, since other sources of scatter will render all mea-
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Figure 4. Chisquare maps of the two interesting parametersβΓmean and
σ, fitting a log–normal distribution inΓ to theδ-histogram in Fig. 3. The
curves show the formal 1, 2, and 3 sigma confidence contours. Left panel:
unbeamed X-rays, right panel: beamed X-rays.

surements derived from the scatter about the FP upper limits, we
cannot make any statements about the meanβΓmean in the sample,
while we can safely state thatσ 6 0.8+0.8

−0.6 (3-sigma limits).
In this context, it is interesting to note the recent claim oflim-

its 0.43 ∼< βΓ ∼< 1 for the jet in Cyg X-1 (Gleissner et al. 2004),
which is part of the FP sample. Given the upper limit onσ, this
would place a 3-sigma upper limit onβΓmean 6 250 and put Cyg
X-1 at the low end ofβΓ distribution. In other words, if most of the
scatter in the distribution is indeed due to relativistic beaming, then
most of the jets in the sample should have faster velocities than Cyg
X-1. The limit onβΓ for Cyg X-1 is based on the lack of correla-
tions between radio and X-ray emission above a given frequency.
If other XRB jet source are indeed significantly faster, thisshould
manifest itself correlations between radio and X-rays on shorter
timescales than in Cyg X-1, which can be tested observationally.

The sample used to derive the FP contains some steep spec-
trum sources and some sources without measuredαr. As discussed
in Merloni et al. (2003), this can be an additional source of scatter.
In order to assess the influence of the presence of steep spectrum
sources on the scatter about the fundamental plane and on thelimits
we can place on theβΓ distribution, we repeated the same analaysis
as above limited to sources that are known to have flat radio spectra.
We find that the scatter is slightly reduced and that the 1-sigma con-
fidence contour moves downward to lower values ofσ, while the
2- and 3-sigma confidence contours are expanded in all directions.
This is because the number of sources in the sample is reduced
significantly, thus reducing the statistical significance of the result.
The overall shape of the contours is not changed, and the maincon-
clusion that one can only place an upper limit ofσ 6 0.4+1.2

−0.4 from
these considerations remains.

4.2 Beamed X-rays

If we try to reproduce the scatter about the FP in a model wherethe
X-rays are produced in the jet at the sameΓ as the radio (e.g., as
synchrotron or synchrotron-self-Compton radiation), theformalism
changes: Assuming the X-ray and radio fluxes are emitted withthe
sameΓ and the same viewing angle, and taking the X-ray flux to
follow a powerlaw of the formFx ∝ ν−αx , the observed deviation
of the radio flux from the FP defined in eq. (8) is

δ(P, Γ) =
Γ0.6αx−αr−0.4k

[

1

(1+βP )k+αr
+ 1

(1−βP )k+αr

]

[

1

(1+βP )k+αx
+ 1

(1−βP )k+αx

]0.6
(10)



Constraints on beaming 5

For k ∼ 2, αr ∼ 0, andαx ∼ 1/2 (typical for optically thin
synchrotron emission), it turns out that eq. (10) requires unrealis-
tically large values ofΓ to obtain the observed scatter about the
FP, as plotted in the right panel of Fig. 4. The range inΓ implied
by the 1-sigma contours onβΓmean andσ would reach fromΓ of
order unity toΓ ∼ 105 or higher. Furthermore, in many sources
the X-ray spectra are steeper thanαx = 1/2. As can be seen from
eq. (10), the effectiveness of beaming to produce scatter about the
FP is reduced further whenαx is increased from 0.5 to 1 (in the
latter case, values ofβΓmean ∼ 108 andσ ∼ 10 are required to
produce the observed amount of scatter).

Two possible conclusions arise from this result: If the X-rays
are produced by the jet, then either a) some other source of statis-
tical uncertainty must be present to dominate the observed scatter
about the FP, and/or b) the X-ray emission must arise from a region
of the jet that suffers less relativistic beaming. Most jet acceleration
models actually accelerate the jet over several decades in distance
to the core. The latter scenario would therefore be compatible with
the general notion that the optically thin X-ray synchrotron emis-
sion is dominated by the innermost region of the jet, closestto the
core, while the optically thick radio emission stems from a region
further out that might have been accelerated to largerΓ.

Simple direct synchrotron models do present other challenges
(Heinz 2004). More realistic scenarios include a combination of
synchrotron plus synchrotron-self-Compton and inverse Compton
scattering of disk radiation (Markoff & Nowak 2004). It is not clear
whether the X-ray emitting region in this scenario would be co-
spatial with the radio emitting region or not. Certainly, however,
the modest amount of scatter in the XRB radio-X-ray relationand
in the FP relation cannot be used to argue in favor of a jet origin
of the X-ray - both disk X-rays and X-rays from the base of the jet
can easily produce the observed amount of scatter.

4.3 Blazars and highly beamed sources

As mentioned in§2, in the absence of velocity constraints on in-
dicidual source (like those on Cyg X-1 used above), the only way
to obtain an upper limit onβΓ from this method is to observe the
cutoff at high luminositis where the sources fall into the beaming
angle and no further amplification is possible. However, in those
sources the X-rays almost certainly contain a beamed component
from the jet, as observed in blazars and BL-Lacs. Thus, the source
of the X-rays is possibly not the same as in the unbeamed sources
and the upper cutoff will not adequatly sample the maximumΓ.
Furthermore, the sample used here was selected to exclude blazars
and BL-Lac objects (with the exception of 3C279) since they are al-
most strongly selection biased and because the X-rays most likelty
come from a different source. Thus we have specifically eliminated
the possibility to sample the upper cutoff even if it were observable.

Following eq. (10), the effect of an additional, strongly
beamed X-ray component is toreduce the deviation from the reg-
ular FP relation that would otherwise be measured for a largepos-
itive beaming of the radio flux alone. For a truly randomly ori-
ented, unbiased sample, the large majority of the sources will not
be stringly affected by this, because at highβΓ, a very small frac-
tion of sources falls into the beaming cone, while at lowβΓ, beam-
ing is unimportant. Since we cannot be sure that the FP sampleis
free of bias, a note of caution is in order regarding possibleselec-
tion effects. Still, because the conclusions reached in this paper are
not based on claims about the upper cutoff in the flux distribution,
the results should be robust even if the contribution from highly
beamed sources is not treated entirely self-consistently.

5 CONCLUSIONS

We showed that the scatter in the radio-X-ray relation in XRBs and
in the “fundamental plane” relation in accreting black holes can be
used to constrain the width of the Lorentz factors distribution of the
jets in these sources. It cannot be used to put an upper limit on the
mean Lorentz factor〈Γ〉 of the jets in the sample. However, if all of
the scatter is indeed due to relativistic Doppler boosting,we show
that a lower limit can be put on〈βΓ〉. Both log-normal and log-flat
distributions inβΓ fit the observed scatter well. We show that, if
the X-rays are produced in the jet, they either have to originate in
an unbeamed portion of the jet (close to the base) or other sources
of scatter must dominate in the “fundamental plane” relation.
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